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SUMMARY

A multiwave coupled wave analysis of phase modulated, transmission gratings is
made. The aim is to calculate the first order diffraction efficiency as a function of the
modulation and a volume parameter, for arbitrary phase profiles. Sinusoidal, square,
triangular and sawtooth gratings are investigated in detail through the thin, multiwave and
volume diffraction regimes, using analytic and numerical techniques. The relative merits
of these profile are discussed in terms of efficiency and ease of fabrication. High
efficiencies (,907c) are found to be possible in the multiwave regime.

T Is, F o r

'I- ,t ,'2 ' , "l .

Copyright
C

Controller HMSO London

1989



RSRE MEMORANDUM NO 4325

MULTIWAVE DIFFRACTION ANALYSIS OF TRANSMISSION PHASE GRATINGS

C W Slinger

CONTENTS

I INTRODUCTION

2 THEORETICAL ANALYSIS

3 RESULTS

4 CONCLUSIONS

I INTRODUCTION

Grating structures are widely exploited in many technological disciplines. They find
uses in diffractive optical elements, integrated optics, acousto optics, optical processing and
computing, holography and other areas involving manipulation of electromagnetic radiation.
A knowledge of the diffraction characteristics of gratings is essential, in order that the%
may be used effectively.

In this paper, the behaviour of lossless, planar (the grating is uniform throughout),
phase modulated (diffraction is caused by a periodic variation in optical path length).
unslanted (the grating fringes are normal to the boundaries), transmission gratings is
analysed over a range of operating conditions. This, somewhat idealised, class of gratings
is nevertheless a reasonable approximation in many practical situations. A prime aim of
the analysis is the investigation of diffraction efficiency - in particular, the variation of
efficiency with the amplitude and profile of the phase modulation, and with the degree of
volume character possessed by the grating. The volume characteristics of a grating are
often important in governing its application, as this property determines the number of
diffraction orders present when the grating is illuminated. A volume grating can be
defined as one in which, on replay, a maximum of only one diffraction order, in addition
to the zero order (incident wave), is present. Moharam et al [1] discuss several criteria
defining volume behaviour. The other extreme of grating behaviour - the thin grating
regime - is characterised by a multitude of diffraction orders being significant.

The performance of gratings operating in the various diffraction regimes have been
studies by several authors. Thin (Raman-Nath) grating behaviour [e.g 2,3] and volume
behaviour [e.g 4,5] have been extensively covered, particularly for the case of sinusoidally
modulated gratings. Grating behaviour between the thin and volume regimes - the
multivave regime - has been considered to a lesser extent 16 - 8], although the
theoretical tools to do so are well developed [e.g 9,10]. In particular, multiwave coupled
wave theory provides a powerful method for investigating diffraction in any of the three
regimes [11,12]. The theory is intuitively pleasing and is the approach adopted here.

The general coupled wave equations will be derived in terms of dimensionless
parameters. They will be applied to several different phase modulation profiles and the
analytic solutions in the limiting cases of thin and volume behaviour discussed. Detailed
numerical solutions of the equations over a range of grating parameters will then be



presented and some general conclusions drawn.
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Figure I The grating system to be analysed

2 THEORETICAL ANALYSIS

Figure 1 depicts the grating system to be analysed. For simplicity, the grating is
assumed to be purely pnase modulated and lossless, although it is straightforward to
include losses and absorption modulation. The grating's characteristics will generally vary
as a function of y, but it is assumed to be locally plane. This is valid if the grating
fringes (characterised by the grating vector) change little with x 113]. The periodic phast
variation in the grating - its modulation profile - can be written as:

f(r) - f + f . cos(ik.r + 4,
0 -~ i

i-I

where r is a position vector

fo is the bulk relative permittivity (dimensionless) of the slab containing the

grating,

e is the amplitude of the ith harmonic of the phase profile

K is the grating vector

with iKi = 2,1A

where A is the grating period

4i is a constant characterising the relative phases of the modulation terms.

A monochromatic plane wave, free space wavelength X and propagating at an angle
0o, is incident upon the grating. The wave is polarised perpendicular to the x-y plane
(H mode), although it is relatively simple to treat waves of arbitrary polarisation [11].
Inside the grating, the diffracted waves are assumed to be such that the electric field is
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given by:

E - Am exp(-jk.r:) (2)
Mn -M

where Am is the complex amplitude of the mth diffraction order having wave vector km.
The relationship between the diffracted waves is taken in the 'k-vector closure' form:

k - k + ml( (3)

H mode polarisation means that scalar wave equation can be used:

2 2

V 2E + 0 (,/,o)E - 0 (4)

where

0

By combining equations (1) to (4), and equating coefficients of exp(-jkm.r), a set of
differential equations is obtained:

For m = -o, ..., -1, 0, +1. ..., + :

-K d 2 dA dA
os M d jdr )(m + P)A

0

K,

+ J,,-- ep(jW,)A,. + exp(-j .)A - 0 (5)

where Am is the amplitude of the mth diffraction order

0

K 4

= KJx/cos( 0o) is a modulation parameter,

= K2 /(20#cI) is a volume parameter,

P = sin(6o) 20/K is a bragg parameter.
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This set of coupled wave equations is exact under the conditions specified.
With appropriate matching at the planar grating boundaries (tangential electrical and
magnetic fields), they accurately describe diffraction in gratings of arbitrary phase
modulation. Variation of the phase modulation with depth can be accommodated by
slicing the grating into thin sections - this technique is used for the majority of surface
relief structures [141.

In the case of low modulation, such that e! << co, a further simplification can be
made by neglecting second derivatives. Generally speaking, this approximation is valid for
We;o < -0.2, although the accuracy varies with the degree of volume nature of the
grating [12]. The vast majority of bulk gratings satisfy this criterion, but nearly all
surface relief do not. With this approximation, the equations reduce to the set, for m =
- ..- 1,0,+1 .. +:

dAIn
dT - jrmnl(m + P)A n +

K.

S .exp(j i )A M+ i + exp(-j.i)Am_ il 0 (6)

The grating boundary conditions simplify to become:

Am(x - 0) - 0 (m * 0)

and A (x - 0) - A (7)0 00

No backward diffracted waves are now possible. The coupled wave equations (6)
obey power conservation and can be interpreted in a simple manner. The mth diffraction
order is coupled to the m+i and m-i orders by the coupling coefficient Ki. The
coefficients of the central term are a measure of the mismatch in phase velocities of the
diffracted orders.

For significant power transfer from one mode to the other, three conditions must be
met [5]. Firstly there must be a coupling path between the two orders (this need not be
a direct path [15,16]). Also the length of the interaction region must be corectly chosen.
Finally, their phase velocities must be approximately equal. In equations (6), " governs
the length of the interaction region. fn is a measure of the dephasing between the
relative orders [17]. This parameter has prime importance in governing the diffraction
regime within which the grating will operate [18]. Phariseau [19] showed that the sum of
the diffraction efficiencies of the higher orders is less than, or approximately equal to
1/f02 . Note that the f) term is a function of the coupling constant i 1 , but does not
include the physical thickness of the grating. Thus gratings can be only one or two
wavelengths of light thick, yet still exhibit true volume diffraction, a point misunderstood
by many researchers. The form of the fI parameter's independence of physical thickness
is in contrast with the parameter 0 K2 d/o, used by many early workers as a diffraction
regime criterion.
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Diffraction Regimes

In general, the solution of the infinite set of equations (6) requires some truncation
to a finite set of diffraction orders and numerical techniques. However, there are two
limiting cases for which analytic solutions are possible. These are at the opposite
extremes of transmission grating behaviour, and occur when the volume parameter 0 takes
vanishingly small or very large values. The former case is referred to as thin grating
behaviour (often termed Raman Nath Diffraction after Raman and Nath's thin, sinusoidal
grating analysis [2]); the latter as volume (or thick) diffraction, and was treated, for the
sinusoidal case, by Kogelnik [4].

As Q7 tends to very small values, the dephasing term for each diffraction order
becomes small. Large numbers of orders can have significant power in them. Equations
(6) become, for m = -, .... -1, 0, +1,.

dexp(jt)A+ 1  + exp(- 0 (8)

Analytic solutions to this equation exist for a variety of profiles (e.g [3]). Identical
solutions can be obtained by other techniques such as the optical path method [20], and
the classical transmittance methods. The thin grating regime is found, typically, for
1 < 0.01. As 02 increases, equations (8) become less accurate, due to the dephasing terms
in (6) becoming significant.

At large values of f2, Bragg effects become dominant. Diffraction orders other than
the one on-Bragg (i.e such that P + m = 0) have such a large mismatch in phase
velocities that very little power is coupled into them. In the limiting case then, for
replay of the grating in the vicinity of the m = i on-Bragg condition, the infinite set of
coupled wave equations (6) reduce to only two in number - provided i' is a harmonic of
the grating profile:

dA K.0 1
+j IA. - 0 (9)
d.- K I I

dA. K

- .jiI-(i + P)A. + j - A - 0 (10)
9 1 0

Analytic solutions are possible. When fully on the ith Bragg condition, these reduce to:

"70 " Cos 2 (r K iIK I (11)

and

"7i - sin2 (
- 

K /K 1 ) (12)
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For the i = 1 case, the solutions of (9) and (10) agree with Kogelnik's analysis [4]. For

large enough Ql then, 100% conversion into the ith order is possible. This occurs when

replay is on-Bragg for the ith harmonic of the grating at:

- (2n + 1)w K 1 /2K i  (n - 0,1,2 .... ) (13)

The high efficiencies of these volume, phase gratings mean that they have many

applications. The above results show that sinusoidal modulation is not a necessary

requirement.

3 RESULTS A

I I

I I

b

C

ye

Figure 2 The sinusoidal, rectangular, triangular and sawtooth modulation profiles

Defining the modulation profile as the permittivity variation as a function of y, the

gratings with the following profiles (figure 2) were investigated:

a Sinusoidal

b Rectangular

c Triangular

d Sawtooth
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The sinusoidal profile is of much practical importance, as holographic (interferometric)
recording techniques generally give rise to such a grating, at least to a first approximation
The modulation is given by:

- max + (min )/2 (14)

- A1/2 (15)

- 0 (16)

where (min is the minimum and rmax is the maximum relative dielectric constant of the
grating profile and

A(- (' - f

max min

The thin grating efficiency is given by the well known formula, as derived by Raman and
Nath [2]:

2
IA I

- J2(2r)
rr- 1 2 m

IA I
00

where Ji(x) is a Bessel function of the first kind, of order i. A maximum of 33
1 

'
occuRs at m = + 1, ' = 1.84.

The other three grating profiles are usually obtained by exposure of a recording
medium through a mask. This is a commonly used method of gr!I'ng fabrication.
particularly for computer generated holograms [21] and infra-red diffractive structures [22]
Binary masks are the simplest, and result in rectangular gratings. The modulation in such

a case is given by:

( min +A( p (17)1

- (2/ir),A sin(iprr) (19)

- 0 (20)

p is a fill (mark/space) parameter. A value of 0.5 corresponds to a square wave
grating.

The thin rectangular grating diffraction efficiency is given by:
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- -4(p- 2).sin'(/[2 l- cos(2rp) (21)

77. - f2/- cos (2wm-).sin{ [2( - cos(27) (22)

(m * 0)

Maximum efficiency for a square wave grating is 40.5% for the +1 orders at = 1, For

a given material modulation then, a thin regime square wave grating gives higher
efficiency and requires less physical thickness than an equivalent sinusoidal grating.

Grey scale masks are capable of producing many modulation profiles. The
triangular profile is characterised by:

f - (' + ' )/2 (23)
o max min

f - If-{2,( )}2 (i Cdd' (24

f -" 0 (i even) (25.

i -0 (26)

The thin. triangular grating efficiency is given by

7m - /[(t/2) 2 
- m

2
]}

2  
sn 

2
(w 

2
/4) (m even) (21)

q.- {l/[(w /2 )2 _ m
2
]}

2
.cos 

2 
(1 

2 
,4) (m odd) (28)

A maximum of 29.8% occurs for m = +1 at . = 0.87.

Finally, the sawtooth profile is described by

(f + f )/2 (29)
0 max min
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S- /(i*r) (30)

w T/2 (31)

The thin sawtooth grating efficiency is:

sin2 (W1) (32)17,n {1.(p" m)1
2

Perhaps surprisingly, a maximum efficiency of 100% is achievable. For example, this
occurs at m = +1, 1 = 1. This overturns the notion that thin gratings are necessarily
inefficient. A simple qualitative explanation for the high performance of the sawtooth
profile can be given [20]: 100% efficiency may be achieved for a particular order when
the direction of that order coincides with the 'blazing'.

Numerical Results

The coupled wave equations (6), subject to the boundary conditions (7) were solved
for the sinusoidal, square, triangular and sawtooth gratings, using a Runge Kutta technique
[23]. In each case, the first order diffraction efficiency I, for m = I on-Bragg repla,
was calculated. In the sinusoidal, rectangular and triangular gratings (i = 0), 77+1 around
m = +1 is equal to 77-1 around m = -1, due to symmetry considerations. However, in
the case of the sawtooth grating, this is not so. "7-1 at m = -1 was found to give
comparatively poor performance, and is not shown here.

A sufficient number of diffraction orders were taken to give at least 1% accurac
Typically, for the multiwave and thin regimes, this required orders up to +20 and +40
respectively. The results are shown in figures 3 to 6. Both contour and perspective plots
are depicted to aid interpretation. Computation time was of the order of six hours per
plot (running on a VAX 8650).

Several observations can be made from the plots:

i) For low values of [2 (11 -* 0.01), in all cases, the results agree closely with
the appropriate analytic expressions (equations 17, 21, 22, 27, 28, 32) for thin
grating behaviour. This confirms that the P parameter is a useful guide to
the onset of the thin diffraction regime, whatever the modulation profile.

ii) At high values of [Q (02 - >10), the diffraction efficiencies all converge to the
same values, irrespective of grating profile. These values are those given by
equations (II) and (12), for the i=I case. This seems a reasonable result,
and can be explained heuristically by noting that the diffraction orders, other
than the +1, are so far off Bragg that there is no power coupled into them.
Thus the behaviour of all grating profiles converge to the fundamental sinusoid
under these conditions.
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Figure 3 Sinusoidal grating. +1 diffraction efficiency, for m =+1 on-Bragg
replay, as a function of the modulation parameter l and the volume parameter P.

Note the logarithmic 11 scale. In the contour plot, contour 1 =10% efficiency,

2 =20% etc.

I;U

Figure 4 Square wave grating. Othewise, as in figure 3.
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Figure 5 Trangular grating. Otherwise, as int figure 3
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optimum in terms of multiwave efficiency [24]. A rectangular grating with
p= 0.4 has over 97% efficiency at (i ,l) = (1.46, 3.3), for example. Such

regions may be important in some practical devices in that gratings can be
fabricated which are not volume, yet are of high efficiency. This enables a
much wider choice in grating thickness, modulation and grating vector. The
lower the value of [2 required, for example, the less off-axis a transmissive
diffractive element would have to be. In other situations, it may be difficult
to make a volume grating, due to material considerations [e.g 25].
Alternatively, it may be that the resolution (grating fequency) achievable by
the mask system, or the recording material itself, is limited. Therefore
operation in the multiwave regime at a high efficiency point can be beneficial.

Another, potentially valuable, advantage of operating in the multiwave
regime may be in computer generated hologram (CGH) manufacture.
Generally speaking, current technology for writing CGHs is limited by the
resolution of the writing device. This means that non-volume gratings are
invariably produced (although at longer wavelengths than visible, this need not
be so). High efficiency CGHs can then be made holographically, by recording
a volume grating copy from the master CGH. However, by operating in the
multiwave regime, at one of the efficiency maxima, high efficiency can be
achieved with a grating Of relatively low spatial frequency. For example, a
square wave grating operating at (s ,l) = (2.97, 0.5) could be 91% efficient,
yet has a grating period of -5 times larger than the equivalent volume device.
Thus, it may be possible for high efficiency computer generated holograms to
be fabricated directly without the time consuming holographic copying step.

However, it must be borne in mind that whilst high efficiencies can be
achieved for on-Bragg replay in the multiwave regime, off-Bragg replay of
such gratings can produce several diffraction orders of significant amplitude.
Figure 7 shows a typical example of replay of the square wave grating, with

0

0 .2 -2>

!tt

Figure 7 Replay of a square wave grating in the multiwave regime, around
(l,fl) =(2.97, 0.5). Variation of diffracted intensities in the significant

orders as a function of the replay angle 10 < 6< + . Other grating
parameters: on-Bragg angles (m = + 1) a 2.41
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Figure 8 Replay of a square wave grating in the volume regime, around
(i,Q) = (w/2, 10.0). Variation of diffracted intensities of significant orders as

a function of replay angle 0' < 0 < + 20". On-Bragg angles = ; 10.8',
otherwise as in figure 7.

(i,Q) = (2.97,0.5), both on and off the Bragg angle. These results were
obtained by solving equations t6) and varying the parameter P, and model the
sort of situation that might be found in a practical application. Several
diffraction orders possess significant power when replay is off the m = +1
Bragg condition. This off-Bragg, multiwave diffraction, should be compared
with the equivalent volume case, shown in figure 8, with (r,Q) = (r12,10).
Only the two orders (the zero, and in this case, the -1) are present. In
situations where multiple higher orders could prove to be deleterious to device
performance and significant off-Bragg replay is anticipated then, operation of
gratings in the multiwave regime must be treated with caution.

(iv) In terms of the maxima in the diffraction efficiency, the square wave grating

is equal or superior to the sinusoidal case. This is true in the thin,
multiwave and volume regimes, Thus square wave modulation should not be
regarded as a limitation in a bulk modulated recording medium. As already
mentioned, the sawtooth grating is remarkable in its high efficiency in the thin
regime. If such modulation profiles could be accurately generated, 100% thin
grating diffractive elements could be made. In comparison to the other
grating profiles, however, the triangular grating seems to have little to
recommend it, having inferior efficiency, in all regimes.

4 CONCLUSIONS

An analysis of bulk, unslanted, lossless, phase-modulated transmission gratings has
been carried out. The performance of sinusoidal, square, triangular and sawtooth profiles
have been investigated in the thin, multiwave and volume diffraction regimes and the
variation of first order diffraction efficiency with modulation and volume parameters
presented. The use of these dimensionless parameters should enable the results to be
applied easily to most situations and most bulk phase recording media.
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The results show that the efficiency achievable with the square wave grating
compares favourably with the sinusoidal profile. It was confirmed that the sawtooth
grating shows particular merit in the thin regime. In the multiwave regime, several
potentially useful operating points exist, some with efficiencies greater than 90%. These
may be utilised in certain applications where volume operation is not possible or is
undesirable. In the volume regime 100% efficiency is achievable, irrespective of the
grating profile.

It is hoped that the results will prove useful in the many areas of optics where
gratings are exploited.
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